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Abstract: The object of this paper is to help understand the role of energy fluctuation and transfer in thermally activated 
chemical reactions in solution. We examine the path of energy flow through the different modes of the solvent and the reagents 
via molecular dynamics simulation of a model atom exchange reaction in rare gas solution. We follow the energy ultimately 
needed to surmount the activation barrier from its origin in the heat bath of the solvent through the sequence of (i) an initial 
fluctuation involving the high translational excitation of a few solvent atoms adjacent to the reactants, (ii) hard solvent-reactant 
collisions producing potential energy spikes, (iii) the appearance of kinetic (translational and some rotational) energy in the 
reactants, and finally (iv) an "internal collision" between the reactants converting their excess kinetic energy into potential 
energy as the barrier is surmounted. The time scale of the entire energy flow process is ~250 fs. The role of momentum 
and kinetic energy is seen to be fundamental in understanding the molecular dynamic mechanism of this solution reaction, 
in contrast to the usual view of reaction mechanism which concentrates on potential energy and atomic positions. 

I. Introduction 
In recent years our understanding of the microscopic, molecular 

dynamic aspect of the rates of chemical reactions in solution has 
considerably improved.1"" The rate, however, is only one aspect 
of a chemical reaction. The general picture, the detailed molecular 
dynamic mechanism of how chemical reactions take place in 
solution, still remains to be fully explained. We do not yet un
derstand, for example, the subject we consider in this article, the 
multimolecular processes in thermally activated solution reactions 
whereby energy flows from the solvent, through intermediate 
forms, into the reactants, ultimately appearing as potential energy 
at the barrier top. 

We can view the mechanism of climbing the barrier in an 
activated chemical reaction in solution as a fluctuation in an 
equilibrium ensemble.9'10,1113 But while the thermodynamic theory 
of fluctuations is well developed, little is known about the dy
namical nature of the actual fluctuations which are important for 
climbing the barrier in activated chemical reactions in a liquid. 
The actual fluctuations, as viewed in phase space, can involve 
momenta (i.e., kinetic energy fluctuations) as well as coordinates 
(i.e., potential energy fluctuations). For these fluctuations to be 
effective they must meet criteria defined both thermodynamically 
(the rareness of the fluctuation must match the amount of free 
energy needed to climb the free energy barrier), and dynamically 
(the fluctuation must mechanically arise from the particular 
Hamiltonian of the reacting system and must couple to the reaction 
coordinate to drive the reaction process13). In this paper we focus 
on the mechanical, dynamical aspects of the fluctuation, specif
ically how the energy necessary to climb the reaction barrier is 
transferred and transformed. To investigate this, we choose the 
Cl + Cl2 -* Cl2 + Cl reaction in argon-like solvent at room 
temperature, which has been used previously1'14 in studies of 
solution-reaction dynamic effects on rates and energy flow within 
and into the solute. 

Clearly, the energy must initially come from the heat bath of 
the solvent, and must be great enough to surmount the energy 
barrier. The scale of the energy flow fluctuation can be indicated 
by an analogy. If one imagines a fictitious process in which a 
mole of reactants synchronously passes over the 84-kJ/mol (20-
kcal/mol) energy barrier illustrated here during the ~250 fs we 
observe, the power required to flow from the solvent to the 
reactants would be ~ 105 times all the electric power generated 
on earth.15 A question which is both interesting and answerable 
in terms of computer simulation is, "What is the specific energy 
transfer mechanism and series of modes through which the energy 
is passed from the solvent to the reaction system at the barrier 
to?" Is it mainly through transfer of kinetic energy or mainly 

* Author to whom inquiries about the paper should be addressed. 

through potential energy? Is the energy flow through single hard 
sphere collisions with a few solvent atoms or does it require the 
cooperation of many such atoms positioned in a particular way? 
The answers to such questions can be expected to depend upon 
the specific nature of the reactants and the solvent. For example, 
in charge-transfer reactions in polar solvents, where long-range 
forces are involved, the energy flow mechanism may be quite 
different from that in a reaction between neutral species in a rare 
gas solvent, as illustrated here. In what follows it will often be 
useful, particularly since this is a symmetrical reaction in which 
the reactants are the same as the products, to keep in mind that 
the arising of the fluctuation by which the barrier is climbed by 
the reactants is just the time reversal of the fluctuation decay 
process16 by which the products dissipate their "specialness". 

The barrier climbing process exhibits a simple yet revealing 
picture of the exchange of energy from the solvent, through a series 
of different modes, to the reactants, ending up as reagent potential 
energy at the top of the barrier. The transition from a pseudo-
equilibrium at -500 fs to pseudo-equilibrium at +500 fs starts 
with a "heat wave" of excess thermal energy flowing from the 
surroundings into a "hot spot" region of solvent near the reactants 
and then into a few solvent atoms adjacent to the reactants and 
is transformed within ~250 fs through a few hard solvent-reactant 
collisions, largely into translational and some rotational energy 
in the reactants. Then the kinetically excited reactants collide 
with one another and convert their excess thermal energy into 
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Figure 1. the Cl + Cl2 -*• CI2 + Cl reaction model in fluid argon solvent. 
One hundred Ar atoms are used in the actual simulations. 

reagent potential energy as the system reaches the top of the 
barrier. As has been described elsewhere,1 in this reaction system 
(i) there are almost no barrier recrossing and thus transition-state 
theory gives the correct reaction rate, and (ii) the flow of energy 
from the solvent into reactant vibrational excitation (which is also 
used to help climb the energy barrier) occurs on a much longer 
time scale than that of our simulations. 

In order to investigate the energy flow process, we use molecular 
dynamics simulation. To facilitate the simulation, we apply the 
usual method of initiating trajectories at the barrier top. The 
general validity of this method has been demonstrated using 
detailed-balance arguments,1 7 1 8 in particular for the purpose of 
calculating rate constants. Thus, we simulate the fluctuation 
process of climbing the reaction barrier by looking at the reverse, 
energy dissipation, process. In earlier articles1'14 the energy flow 
within the reagents themselves is illustrated. In the present article 
we extend our investigation to consider the origin and evolution 
of the reaction energy in the solvent and the means by which it 
is transferred from the solvent to the reactants. While the results 
presented here are specific to this system, we believe that the 
insights gained are useful in understanding energy flow in other 
reactions. 

The paper is organized as follows. In section II we describe 
the system used in the molecular dynamics simulation and the 
method used to collect and analyze the data. In section III we 
present and discuss the results, and we conclude in section IV with 
general remarks. 

II. Methodology and the Hamiltonian 
A. System Potentials. Because the details of the reaction system have 

been presented in another article by Bergsma, Reimers, Wilson, and 
Hynes,1 which we will call BRWH, we only summarize them briefly here. 
Our trajectories are modeled after a simple A + BC - • AB + C atom-
transfer reaction in solution, with the triatomic solute represented by 
chlorine-like atoms of mass 35, and the solvent by 100 argon-like atoms 

(17) Anderson, J. B. J. Chem. Phys. 1973, 58, 4684. 
(18) Anderson, J. B. J. Chem. Phys. 1975, 62, 2446. 

at a density" of 1.4 g cm"3 (see Figure 1). 
The potential energy for the system is given by a sum of solvent, solute, 

and solvent-solute terms. The solvent potential energy is assumed to be 
a sum of pair interactions between solvent atoms. Each pair interaction 
between solvent atoms / and j is taken to be a Lennard-Jones 6-12 
potential 

*« (ILi) 

where rtj is the distance between the two atoms, e,j is the depth of the 
minimum in the potential, and a(j determines the finite intermolecular 
distance at which $LJ(r(/) = 0. ~~ The values of «,y and an are given in 
BRWH. The ABC solute-solute reagent potential energy is represented 
by a three-body London-Eyring-Polyani-Sato (LEPS)20 surface, $LEPS, 
which is described in detail in BRWH. The reagent potential energy 
asymptotically reduces to a diatomic bound Morse potential2' when one 
chlorine atom separates from the other two. The parameters chosen for 
this potential define a sharp barrier with a height of 84 kJ/mol (20 
kcal/mol). Finally, the solvent-solute potential energy term is repre
sented by a sum of pair interactions between solvent atom i and solute 
atom v, each taken to be a Lennard-Jones 6-12 potential 

<t>. solvent-solute E*u('/.) (112) 

with constants «,„ and aiv as given in BRWH. 
B. Molecular Dynamics. The periodic boundary conditions of our 

system are defined by a truncated octahedron22 (bcc unit cell with lattice 
constant a/2 = 10.67 A), so as to approximate an infinite fluid argon 
solvent. To determine the molecular dynamics of the 103 solute and 
solvent atoms involved, we use Hamilton's equations of motion for par
ticles in a conservative force field 

dH 

S p " ' 1 (H.3) 

where p" and rN are the conjugate momentum and position coordinates 
for a system of N particles, and H is the Hamiltonian of the system, given 
by 

H — Ksnlutt + £ .„ !„„ , + $ + ^sniv... + <t> (H.4) 

where the ^Ts are the kinetic energies, and the potential energies are as 
defined above. A maximum range of 8 A is used for the potentials, and 
force discontinuities are avoided by feathering the potentials smoothly 
to zero.2,23,24 We numerically integrate these classical equations of 
motion using a modified Verlet algorithm23,25"27 with a time step of 1.0 
fs. 

C. Initial Conditions and Trajectories. Our trajectories are initiated 
from the top of the barrier, i.e., at the transition state, then run forward 
and backward in time. This technique, developed by Keck,28 Ander
son,17,18 and Bennett,29,30 is more practical than beginning trajectories far 
from the transition state because it alleviates the problem of infrequent 
successful reactions caused by high energy of activation, and thus max
imizes the efficiency of the simulations. 

We begin by preparing 10 independently chosen initial seed configu-

(19) This corresponds to a liquid density at lower temperature. We study 
the system at 298 K, above the critical point for Ar. 
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rations of the solvent and solute atoms by selecting their positions at 
random, checking that no atoms are too close to one another. Each one 
of these "seeds" is energy minimized subject to the constraint that the 
triatomic (ABC) solute is at the transition state, defined such that the 
ABC asymmetric stretch is zero; i.e., the AB distance equals the BC 
distance. From each of the 10 seeds, 10 different initial conditions are 
prepared by equilibrating the system at a temperature of 298 K, while 
the solute is at the transition state, free to move in its symmetric stretch 
and bend coordinates, as well as to rotate and translate as a whole. Thus, 
the 100 initial condition files are selected from a canonical ensemble of 
systems at the transition state. 

Each initial condition file is used to initiate a trajectory from the top 
of the barrier at time t = 0 by removing the constraint that the asym
metric stretch of ABC is set to zero and by selecting all velocities from 
a Maxwell-Boltzmann distribution at 298 K. Trajectories are propagated 
using a constant energy algorithm for a half-picosecond in both the 
positive and negative time directions. As the reaction progresses, the 
resulting positions, momenta, kinetic and potential energies, and cumu
lative work done by the solvent atoms on the reactants are collected at 
10-fs intervals. For any given solvent atom;', a solvent-solute potential 
energy is calculated as a function of time as the sum of its potential 
relative to each of the three solute atoms, fy = 5Z„*LJ(r/>). The work AW 
done by each solvent atom j is defined, for our purposes, by looking at 
the trajectory starting at T = - 500 fs, and integrating, 

AW/0= T1LMO-MOd(O (115) 

where / is a time during the reaction, f,; is the force exerted on chlorine 
solute atom e by solvent atom j , and f, is the velocity of the chlorine atom 
involved. The sum of all the AW^t) over the solvent atoms j is the total 
work done by the solvent on the reagents, and it must equal the change 
in the energy of the reagents31 

EAW/0 = £„,„«(?) - E5011110(T) (116) 

which is on the average approximately32 the gas-phase barrier height as 
T —• _oo and with t = 0. We also record the position of each solvent atom 
in terms of its distance relative to the reagents and, in particular, whether 
the solvent atom under consideration is nearer the Cl atom or the Cl2 
molecule. 

We collect these data for 100 trajectories to achieve reasonable sta
tistics. Because we consider them both as averages over the entire en
semble of trajectories and on an individual basis, we are able to directly 
observe in the simulation the nature of those energy fluctuations which 
result in successful reactions. 

III. Results 
At the origin of each of our 100 trajectories (which represent 

a sample of reactive trajectories) where time r = -500 fs, we begin 
with essentially all the energy thermally distributed in the kinetic 
and potential energy of the solvent. As we near the middle of 
the trajectory, i.e., approaching t = 0, the solute potential energy 
rises as the barrier is surmounted. Our interest is in what tran
spires between these two points in time, resulting in the conversion 
of solvent thermal energy to potential energy of the reagents at 
the top of the barrier.33 By separately observing the evolution 
in time of the modes of solvent kinetic and potential energies, 
solvent-reagent potential energy, work done by the solvent on the 
reagents, reagent translational and rotational energy, and reagent 
potential energy, we are able to observe the sequential flow of 
energy among these modes. We observe this energy flow both 
for individual trajectories and for an average over an ensemble 
of 100 trajectories. 

A. Kinetic and Potential Energies of the Solvent "Hot Spot". 
Considering the ensemble of only those trajectories which will 
ultimately react, we observe that at a time sufficiently long before 
reaching the barrier top the energy is distributed in an approx
imately equilibrium fashion, mainly in the potential and kinetic 
energies of the solvent. Because of the finite number of solvent 

(31) Goldstein, H. Classical Mechanics, 2nd ed.; Addison-Wesley: 
Reading, MA., 1980. 

(32) This is exact for a reaction system where the reaction coordinate is 
totally separable from other solute and solvent coordinates. 

(33) In a reaction system with stronger coupling to the solvent, the energy 
change associated with climbing the barrier may also include a significant 
contribution from the change in reagent-solvent interaction along the reaction 
coordinate. 
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Figure 2. Change in the total kinetic (solid line) and potential (dashed 
line) energies of the solvent in the process of climbing the barrier, av
eraged over 100 trajectories. The zero of time is at the barrier top, and 
the zero of energy is set to the energy at -500 fs. 

atoms and our microcanonical trajectories, the "temperature" at 
this point in our simulation is actually about 25 K higher than 
our temperature at 298 K at the barrier top. In experimental 
reality, a "heat wave" will flow in from the surrounding solution, 
and shortly before barrier climbing there will be a "hot spot" of 
excess thermal energy in the solvent in the vicinity of the reagents. 
This excess thermal energy will then flow from the solvent into 
the reagents. (Even with an infinite heat bath of solvent, an initial 
"hot spot" of solvent in the region of the nascent reaction, carried 
in by a "heat wave" from the surroundings, is expected, as this 
makes the reactive event more probable. This can be more clearly 
understood by considering the time-reversed process of dissipation 
of energy in falling off of the barrier.) 

We first consider the change in the total solvent kinetic and 
potential energies from T = - 500 fs to / = 0 fs at the barrier top. 
Figure 2 shows that most of the energy necessary for climbing 
the barrier results from excess kinetic energy of the solvent, with 
much less coming from the solvent-solvent potential energy. This 
can be understood in an approximate equilbrium context if we 
think about the contributions of kinetic and potential energies to 
the specific heat of a rare gas solvent. For a solvent with N 
particles, in a microcanonical ensemble, the constant volume heat 
capacity Cv is related to the fluctuations in the kinetic energy 
via25'34 

( ( A K ) 2 W = 3/2AV7*U - 3NkB/2Cr) (III.7) 

in which AK is the deviation of the kinetic energy from its average 
value, NEV indicates that the ensemble average is for constant 
particle number N, total energy E, and volume V, and kB is 
Boltzmann's constant. The relation K = 3NkBT/2 can be used 
to rewrite this equation as 

(III.8) Cv=
3/2NkB/(\ - 3N((AT)2)/2T2) 

If we think about our reagents as an energy sink cooling the 
solvent, with Cy = AE/AT, then for a barrier of AE the change 
in the kinetic energy of the solvent will be 

AK = y2NkBAT = (1 - 3N((AT)2)/2P)AE (III.9) 

Using AE = AK + A*, where A$ is the deviation from the average 
of solvent potential energy, we have 

AK 
A$ 

2T2 

3N((AT)2) 
(III.10) 

The right-hand side can be calculated from an equilibrium mi
crocanonical run of our system away from the barrier top. The 
result is AKj A$ = 2.3 ± 0.2, which agrees with the ratio of energy 

(34) Lebowitz, J. L.; Percus, J. K.; Verlet, L. Phys. Rev. 1967, 153, 250. 
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Figure 3. (a) Solvent kinetic energy as a function of time and atom rann, 
averaged over 100 trajectories. Atoms arc ranked according to their 
maximum kinetic energy, as discussed in the text, (b) Timc-dcpcndcnt 
kinetic energy of the argon solvent atom having the greatest kinetic 
energy peak, shown for an individual trajectory. This atom is also the 
one with the highest maximum of solvent-solute potential energy and of 
work done on the rcactants. Kinetic energies of the other solvent atoms 
arc not shown. 

flow from solvent kinetic versus potential energy shown in Figure 
2. 

B. High Kinetic Energy in a Few Solvent Atoms. Next we look 
at the distribution of the solvent kinetic energy among the solvent 
atoms. For each trajectory we rank the solvent atoms according 
to the magnitude of the kinetic energy peak (atom 0 has the 
highest kinetic energy peak, atom I the second highest, which may 
occur at a different time, and so on). In Figure 3a we show the 
average over 100 trajectories of the kinetic energy of the solvent 
atoms ranked as explained above. A kinetic energy peak, involving 
only a few solvent atoms, occurs at approximately -200 fs, reaching 
a maximum of about 19 kJ/mol. Such a low value would seem 
to make it impossible for our 84-kJ/mol barrier to be crossed using 
this source of energy. However, by looking at randomly chosen 
individual trajectories we see that this deceptively low value is 
a result of averaging over our ensemble. For example, in Figure 
3b we show, for one trajectory, the kinetic energy of the solvent 
atom having the largest peak in kinetic energy. Individual graphs 
show energy peaks of over 30 kJ/mol, which are shorter in time 
and reach higher values. Thus, individual solvent atoms in each 
trajectory (and in different trajectories) reach peaks at different 
times, and the peak of the average is not the average of the heights 
of individual solvent atom peaks taken irrespective of time of 
peaking. To summarize, although averaging broadens the dis
tribution, starting at (== -250 fs, a few solvent atoms gain excess 
kinetic energy from the other solvent atoms. 

C. Solvent-Solute Hard Collisions and Potential Energy Spikes. 
The peak in kinetic energy of a single solvent atom is promptly 
followed by a rapid decay of its kinetic energy, coinciding with 
a steep rise in solvent-solute potential energy for that solvent atom 
as it strikes cither the rcactant atom or diatomic. Many corre
lations may be noted between the kinetic and potential energy 
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Figure 4. (a) Change in solvent-solute potential energy * as a function 
of time and atom rank, averaged over 100 trajectories. Atoms are ranked 
according to their maximum solvent-solute potential energy, as discussed 
in the text, (b) Time-dependent change in solvent-solute potential energy 
of the argon solvent atom having the greatest potential energy peak, 
shown for an individual trajectory. Potential energies of the other solvent 
atoms are now shown. 

graphs. As seen in Figure 4a, the ensemble average potential 
energy increases to a peak of approximately 6 kJ/mol near -125 
fs, and then dissipates rapidly within the next 100 fs. much as 
the kinetic energy did. Furthermore, like the kinetic energy graphs, 
the maximum value of potential energy attained by a solvent atom 
is lowered by our averaging over the ensemble, but may be revealed 
via graphs of individual trajectories. From Figure 4b. we see that 
maximum potential energy peaks arc closer to the order of 18 
kJ/mol than 6 kJ/mol of energy. Wc also note, in comparing 
Figure 3b and 4b for the individual trajectory that the solvent atom 
number with the greatest potential energy in Figure 4b is the same 
as that atom which attains maximum kinetic energy in Figure 
3b. Clearly, crossing the barrier top is dependent upon the energy 
concentrated in a few specific solvent atoms, while the remaining 
atoms contribute much less to the energy required for the reaction. 
By -100 fs from the transition-state barrier, the few positive 
solvent-solute potential energy peaks have already diminished to 
negative values. Additional insight can be gained from calculating 
the work done by the solvent (viewed as an external force) upon 
the reagents. 

D. Work Done by Solvent on Reagents. While the solvent 
kinetic and potential energy spikes are indicative of energy transfer 
in the solvent, they are not direct measures of the energy-transfer 
process behind successful barrier crossing. One direct measure 
is the work done on the rcactants by the solvent. As the sol
vent-solute potential energy rises and decays, the solvent does work 
on the solute atoms both by accelerating them to high velocities 
and by pushing them up the reagent potential energy barrier. 
Hence, we see that the decline of the solvent-solute potential 
energy peak is accompanied by a rapid rise in the amount of work 
done on the reactants by the solvent (Figure 5a,b). Solvent atoms 
begin to do work on the reagents approximately 200 fs before the 
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MNUMBER 

100 

ATOM RANK 
Figure 5. (a) Ranked work H'donc by the solvent on the solute, inte
grated from time r = -500 fs to the point where the barrier is crossed, 
and averaged over 100 trajectories. Atoms are ranked according to their 
maximum value of work done, as discussed in the text. Work is defined 
as being zero at -500 fs, far before the barrier is crossed, then integrated 
from that point on to time / = 0 at the barrier top. (b) Work done by 
the solvent atom having the maximum kinetic and solvent-solute poten
tial energy as seen in Figure 3b and 4b. Of all the solvent atoms, this 
atom also does the greatest amount of work in driving the reaction over 
the barrier; the quanity of work done by other atoms is much less by 
comparison. Work done by other solvent atoms is not shown, (c) Cu
mulative work done by the solvent atoms on the reactants as a function 
of atom rank, averaged over 100 trajectories, illustrating that a few 
solvent atoms contribute almost all the work. 

barrier and very rapidly reach a maximum of over 30 kj/mol total 
work done by a single solvent atom. In Figure 5a we plot the work 
Al+', defined in eq II.6. as a function of time and atom rank (atom 
0 did the maximum work, etc). This work is averaged over 100 
trajectories. In Figure 5b wc show for a randomly chosen tra
jectory the work done as a function of time by the solvent atom 

o 

i 
>-
O 

UJ 20 -
O 

- 2 0 
-500 -400 - 3 0 0 -200 -100 0 

TIME (fs) 

Figure 6. Translational, vibrational and rotational kinetic energies of the 
three Cl atoms as a function of time, shown for an example trajectory. 
The dotted line is Cl-Cl2 relative translational energy, the dashed line-
is Cl2 vibrational kinetic energy, and the solid line is Cl2 rotational energy. 

having the maximum kinetic and solvent-solute potential energies. 
From these two plots we see that work is done by a few solvent 
atoms, and is highly correlated with their kinetic and solvent-solute 
potential energies. By looking at the cumulative work done by 
the solvent atoms as a function of the atom rank (Figure 5c), we 
see that five liquid atoms contribute more than 90% of the work 
necessary to climb the 84-kJ/mol barrier. 

We also examine the work done by each solvent atom in terms 
of its position in angle and distance relative to the reagents. By 
differentiating between those solvent atoms which interact with 
the diatomic Cl reactanl and those which interact with the re
maining atomic Cl, wc may determine the distribution of the work 
done by the solvent in terms of their positions and how they affect 
the chlorine atoms such that the barrier is successfully crossed. 
(This is accomplished in part by viewing the 3D computer ani
mated trajectories.) We find that, over the 100 trajectory en
semble, 75% of the five highest kinetic energy solvent atoms are 
closer to the Cl atom rcactant than to the Cl2 molecule. This can 
be understood as a mass effect since it is more efficient31 for the 
argon atoms to transfer the necessary kinetic energy to the single 
atom of nearly equal mass than to a diatomic of almost twice the 
mass. Furthermore, the second- or third-highest kinetic energy 
solvent atoms tend to interact with cither atom B or C of the 
diatomic such that the kinetic energy is transferred to both the 
translational and rotational energies of the diatomic which, as it 
swings into proper orientation, is then converted to reagent po
tential energy of barrier climbing. Thus, the fluctuation mech
anism behind an acceptable reaction is such that (i) the kinetic 
energy transfer is sufficiently large and (ii) the excess momentum 
in the reactants is directed in such a way as to push the A and 
BC toward each other so as to end up in an approximately linear 
configuration. Since wc are considering only the ensemble of 
accepted fluctuations, any deviation from equilibrium behavior 
results from the special mechanical constraints on the fluctuation 
necessary for climbing the barrier. 

E. Reagent Translational, Rotational, and Vibrational Kinetic 
Energy. The picture of energy flow into and within the solute 
is already outlined in BRWH.1 Here we briefly discuss it and 
draw the connection with the energy flow in the solvent. Ap
proximately 100 fs before reaching the barrier top, the reagent 
atoms gain translational and rotational energy due to a few hard 
collisions with nearby solvent atoms. In Figure 6 we show, from 
an example trajectory, the time evolution of the total kinetic energy 
of the three solute atoms as partitioned into the relative trans
lational energy of the atom relative to the diatomic, the rotation 
of the diatomic, and the vibrational energy of the diatomic. (The 
center of mass translation of the whole Cl3 system is not shown.) 
The ensemble average rotational and translational energies start 
from near their equilibrium values at -500 fs, whereas the vibration 



Energy Flow in an Atom Exchange Chemical Reaction J. Am. Chem. Soc, Vol. 112, No. 2, 1990 529 

^ - ^ 8 0 I — i — i — i — i — i — i — i — i — i — i — i — i — i — i — • — i — i — i — < • 

~Q \ . 

3" 60 - / 

\ 4 0 - f 
UJ 
UJ I 
_, 20 -

< " N 
i — ; A n / 

uj O - A A / \ A A A / I A / \ A / \ A / \ / 
I— [ \ \ \ \ \ \ \ \ \ \ \ \ \ J o \/ \/ V/ V/ v/ \y V/ V/ V/ V/ V/ v/ V 

-500 -400 -300 -200 -100 0 

TIME (fs) 

Figure 7. Internal potential energy of the three Cl atoms as a function 
of time, shown for the same trajectory as in Figure 6. The zero of 
potential energy is set at the -500 fs value. 

is already excited, since the time scale for vibrational energy 
excitation and relaxation in rare gas solution is much longer.1 The 
rotational motion is necessary for the proper, approximately linear, 
alignment of the diatomic with respect to the atom, whereas the 
translational and vibrational energies are both important in our 
case for the actual climbing of the barrier, as explained in the 
next section. 

F. Reagent Barrier Climbing and Potential Energy. Armed 
with enough translational motion of the diatomic with respect to 
the atom and enough vibrational energy in the diatomic molecule, 
the system climbs the barrier in about 100 fs, as shown in Figure 
7. In our system, where the barrier is symmetrically located with 
respect to the exit and entrance valleys, both vibrational and 
translational energies are important for climbing the barrier, 
although translation dominates. In other, unsymmetrical systems 
this will not necessarily be the case.20 We observe that there is 
an interval of time around t = 0 in which the intramolecular forces 
within the Cl3 reagents dominate the trajectories (as already noted 
in BRWH1), and the well-known gas-phase rules35 for barrier 
crossing effectiveness of different types of reactant excitation will 
apply, even in liquid solution. In Figure 7 we plot the internal 
potential energy of the system of the three Cl atoms as a function 
of time, for an individual trajectory. The oscillations prior to the 
time when the barrier climbing occurs are due to the vibration 
of the diatomic. 

G. Summary of Energy Flow. A clear picture of the energy 
fluctuations in the Cl + Cl2 reaction in rare gas solvent can be 
seen from the results discussed above. In Figure 8 we summarize 
the time dependence of the different energy modes in the reacting 
system, averaged over 100 trajectories. We show as a function 
of time (1) the sum of the kinetic energies of the five atoms which 
did the most work, (2) the summed potential energy of these 
solvent atoms with respect to the reagent atoms, (3) the total work 
done by these solvent atoms on the reagent, (4) the total kinetic 
energy of the Cl3 system (exclusive of the kinetic energy associated 
with translation of the center of mass), and (5) the total internal 
potential energy of the Cl3 system. Note that the averaging over 
individual solvent atoms in a trajectory and the ensemble averaging 
smooths out the sharp spikes in the energy in the different modes 
as seen in the individual trajectories illustrated in Figure 3b, 4b, 
5b, 6, and 7. From Figure 8 we can clearly see that there is a 
strong temporal correlation between the fluctuations in the dif
ferent energy modes for those trajectories which are successful 
in reaching the top of the barrier and continuing to products. 
These mode fluctuations mark the energy flow from (i) solvent 
(mainly kinetic) thermal energy, into (ii) high kinetic energy of 
a few solvent atoms, peaking at around -200 fs, then into (iii) 

(35) Levine, R. D.; Bernstein, R. B. Molecular Reaction Dynamics and 
Chemical Reactivity; Oxford University Press: New York, 1987. 
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Figure 8. Energy flow showing the different energy modes and their time 
evolution (averaged over 100 trajectories). The different energies shown 
are (1) the sum of the kinetic energies of the five atoms which did the 
most work (dotted line), (2) the change in potential energy of these 
solvent atoms with respect to the reagent atoms (dashed), (3) the total 
accumulated work done by these solvent atoms on the reagents (dou
ble-short single-long-dashed), (4) the total internal kinetic energy of the 
Cl3 system (double-long single-short-dashed), and (5) the total internal 
potential energy of the Cl3 system (solid). The averaging over the en
semble of 100 trajectories tends to smooth over the sharp peaks seen in 
individual trajectories (see Figure 3b and 4b) of individual solvent atom 
kinetic energy and of potential energy by which the energy is transferred 
through hard collisions, as these peaks occur at different times for dif
ferent atoms and different trajectories. 

potential energy spikes due to hard solvent-reagent collisions as 
work is done by the few fast-moving solvent atoms on the reagents, 
peaking at around -125 fs, then into (iv) reactant kinetic energy1 

at around -75 fs, followed by (v) an "internal collision" between 
the reactants1 converting their excess kinetic energy into the final 
potential energy to surmount the barrier at 0 fs. 

IV. Conclusion 
We have shown for a model A + BC atom-exchange reaction 

in rare gas solution that there is a particularly simple but revealing 
picture of energy flow from the solvent bath to the reaction system. 
We observe in our simulations the evolution of the fluctuation 
involved in climbing the barrier. This fluctuation begins with the 
energy in the solvent-reagent system distributed in an approxi
mately equilibrium manner, even for those trajectories which will 
subsequently climb the barrier. Initially, these energy fluctuations 
must, in experimental reality, arise from a "heat wave" carrying 
energy in from the surrounding solution heat bath, producing a 
"hot spot" in the region of the reactants. (We assume that the 
A and BC are already near one another.) Then, in this particular 
reaction system, we find that excess kinetic energy appears in a 
few solvent atoms near the reactants. The next step is the transfer 
of the high kinetic energy from these few solvent atoms to the 
reactants via hard collisions which are seen as spikes in the po
tential energy between these atoms and the reactants. Armed with 
this energy, stored temporarily as reactant translational and ro
tational energies, as well as with vibrational energy already stored 
in the diatomic, the reactants collide with one another and convert 
the kinetic energy that they have gained into potential energy as 
they climb the barrier to reaction. The solvent atoms which 
participate in the fluctuation then return to equilibrium kinetic 
and potential energy distributions at the barrier top. Note that 
the predominant modes in which the energy is stored in this 
reaction are kinetic energy modes, and thus the "generalized" or 
"molecular dynamic" mechanism by which this reaction takes place 
is predominantly in the momentum part of phase space. This 
augments the usual views of reaction mechanism in solution36 

which are concerned with the evolution of atomic positions, and 

(36) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic 
Chemistry, 3rd ed.; Harper and Row: New York, 1987. 



530 J. Am. Chem. Soc. 1990, 112, 530-537 

thus focus on the coordinate part of phase space and much less 
on the role of momentum and kinetic energy. 

The time scale of the energy fluctuation process (with the 
exception of vibrational energy, which is much longer) is seen to 
be ~250 fs. That it is so short can be understood by considering 
that in this particular reaction system, energy passes mainly 
through translational modes. As a general principle, the allowable 
time for the arising of a fluctuation will be limited by the time 
for its decay. For example, in our case a fluctuation producing 

The simplest chemical reactions may be represented within the 
Born-Oppenheimer approximation by potential energy (PE) 
surfaces containing a reagent valley (or minimum) separated from 
a product valley (or minimum) by a saddle region associated with 
a transition state: the archetypal example of collinear H + H2 

springs readily to mind. Discussions of rates and mechanisms of 
organic reactions, involving polyatomic reagents, may acknowledge 
the multidimensional nature of the corresponding PE hypersurfaces 
but often implicitly assume a similarly simple picture for each 
elementary step. The degenerate hydride transfer A'H" + A - * 
A' + HA - might be imagined as a simple process involving a 
unique saddle point (*) located between the reagent and product 
valleys (R and P) represented schematically by the contours in 
the horizontal plane of Figure 1. If * were the only critical point 
occurring in the vertical dividing plane describing bent symmetrical 
structures, then the simple picture would indeed be valid. In this 
paper we show, however, that a degenerate hydride transfer as 
"simple" as that with A = A' = CH2O may be suprisingly complex. 
The dividing hyperplane of symmetrical structures orthogonal to 
the hydride-transfer reaction coordinate (HTRC) contains many 
critical points within a chemically significant range of energies. 

We have chosen the example of hydride transfer since this class 
of reaction has been the subject of numerous recent theoretical 
studies, owing to its importance in organic chemistry and bio
chemistry.2"" The PE hypersurface for degenerate hydride 

(1) (a) SERC Advanced Fellow, University of Bristol. Present address: 
School of Chemistry, University of Bath, Bath BA2 7AY, U.K. (b) Upjohn 
Co. 

(2) Sheldon, J. C; Bowie, J. H.; Hayes, R. N. Nouv. J, Chim. 1984, S, 79. 
(3) Donkersloot, M. C. A.; Buck, H. M. J. Am. Chem. Soc. 1981, 103, 

6549; Ibid. 1981, 103, 6554. Brounts, R. H. A. M.; Buck, H. M. Ibid. 1983, 
105, 1284. 

(4) van der Kerk, S. M.; van Gerresheim, W.; Verhoeven, J. W. Reel. Trav. 
Chim. Pays-Bas 1984, 103, 143. Verhoeven, J. W.; van Gerresheim, W.; 
Martens, F. M.; van der Kerk, S. M. Tetrahedron 1986, 42, 975. 

translational excitation of nearby solvent atoms which occurred 
5 ps before barrier climbing would not be useful, since the 
translational energy would have dissipated before it could be used 
for barrier climbing. 
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transfer from methylamine to the methaniminium cation (reaction 
I)7'10 has just two geometrically distinct critical points in the 
dividing hyperplane between reagents and products, but the 
corresponding hyperplane for the isoelectronic methoxide anion-
formaldehyde system (reaction 2)2'8,9 contains six geometrically 
distinct critical points in the range of chemical significance, only 
three of which have been reported previously. We now show how 
the critical points in these dividing hyperplanes may be organized 
topographically by consideration not only of their indices (the 
numbers of imaginary vibrational frequencies) but also importantly 
of the nature of the corresponding normal modes. This strategy 
for mapping the chemically relevant critical points of model (but 
real) chemical reaction surfaces is particularly useful when these 
surfaces are of a gently undulating nature; to follow an intrinsic 
reaction coordinate (IRC) over such an essentially flat surface 
is very difficult. The specific details of this topographical in
vestigation may change at higher levels of theory (e.g., larger basis 
sets and/or inclusion of electron correlation), but it is not our 
present aim to provide a quantitatively accurate description of 
these energy surfaces or a complete account of the chemical 
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Reaction-Surface Topography for Hydride Transfer: Ab Initio 
MO Studies of Isoelectronic Systems CH3O- + CH2O and 
CH3NH2 + CH2NH2
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Abstract: The topography of the transition-state regions of the multidimensional potential energy surfaces for hydride transfer, 
(1) from methylamine to methaniminium and (2) from methoxide to formaldehyde, is described qualitatively on the basis 
of the characteristics (relative energies and curvatures) of critical points, each having negative curvature in the potential along 
the hydride-transfer reaction coordinate. Several new critical points on the HF/3-21G surfaces are reported. The geometry 
of hydride transfer depends upon steric effects, electrostatic interactions, and the possibility of 2e or 6e transition-state aromaticity. 
The varying interplay of these factors accounts for the differences between the reaction surfaces of the isoelectronic systems 
considered. 
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